The compost metagenome as a source of T4 bacteriophage pyrimidine dimer glycosylase homologues

نویسندگان

چکیده

Compost is a promising source of thermotolerant enzymes for their application in biotechnology. Homologues bacteriophage T4 DNA glycosylase can find pharmaceuticals and perfumery. Five homologues pyrimidine dimers T4, product the denV gene, were found by comparing using DELTA-BLAST algorithm with compost metagenome proteins. Phylogenetic analysis sequences enzyme was carried out Maximum Likelihood MegaX software package. Thus, an interesting spectrum proteins, repair enzyme, found. After structural modeling, they be tested thermal stability as basis therapeutic prophylactic drugs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demonstration of pyrimidine dimer-DNA glycosylase activity in vivo: bacteriophage T4-infected Escherichia coli as a model system.

An approach to the detection of pyrimidine dimer-DNA glycosylase activity in living cells is presented. Mutants of Escherichia coli defective in uvr functions required for incision of UV-irradiated DNA were infected with phage T4 denV+ or denV- (defective in the T4 pyrimidine dimer-DNA glycosylase activity). In the former case the denV gene product catalyzed the incision of UV-irradiated host D...

متن کامل

den V gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities.

Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiate...

متن کامل

The catalytic mechanism of a pyrimidine dimer-specific glycosylase (pdg)/abasic lyase, Chlorella virus-pdg.

The repair of UV light-induced cyclobutane pyrimidine dimers can proceed via the base excision repair pathway, in which the initial step is catalyzed by DNA glycosylase/abasic (AP) lyases. The prototypical enzyme studied for this pathway is endonuclease V from the bacteriophage T4 (T4 bacteriophage pyrimidine dimer glycosylase (T4-pdg)). The first homologue for T4-pdg has been found in a strain...

متن کامل

Disruption of the bacteriophage T4 Mre11 dimer interface reveals a two-state mechanism for exonuclease activity.

The Mre11-Rad50 (MR) complex is a central player in DNA repair and is implicated in the processing of DNA ends caused by double strand breaks. Recent crystal structures of the MR complex suggest that several conformational rearrangements occur during its ATP hydrolysis cycle. A comparison of the Mre11 dimer interface from these structures suggests that the interface is dynamic in nature and may...

متن کامل

Characterization of a novel cis-syn and trans-syn-II pyrimidine dimer glycosylase/AP lyase from a eukaryotic algal virus, Paramecium bursaria chlorella virus-1.

Endonuclease V from bacteriophage T4, is a cis-syn pyrimidine dimer-specific glycosylase. Recently, the first sequence homolog of T4 endonuclease V was identified from chlorella virus Paramecium bursaria chlorella virus-1 (PBCV-1). Here we present the biochemical characterization of the chlorella virus pyrimidine dimer glycosylase, cv-PDG. Interestingly, cv-PDG is specific not only for the cis-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2021

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202126504009